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Mining iron: Iron uptake and transport in plants
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Abstract Iron uptake in plants is highly regulated in order to
supply amounts sufficient for optimal growth while preventing
excess accumulation. In response to iron deficiency, plants in-
duce either reduction-based or chelation-based mechanisms to
enhance iron uptake from the soil. Genes involved in each mech-
anism have been identified from various model plants including
Arabidopsis and rice. Iron transport within plants is also tightly
controlled. New information has emerged on transporters that
play a role in xylem loading and phloem loading/unloading of
iron, and on the iron chelators involved in iron homeostasis.
Some of the components regulating iron deficiency responses also
have been elucidated, demonstrating that iron dependent gene
regulation occurs at both the transcriptional and post-transcrip-
tional levels.
� 2007 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Iron (Fe) is an essential nutrient for plants. It is required for

life-sustaining processes from respiration to photosynthesis,

where it participates in electron transfer through reversible

redox reactions, cycling between Fe2+ and Fe3+. Insufficient

Fe uptake leads to Fe-deficiency symptoms such as interveinal

chlorosis in leaves and reduction of crop yields. Plants need to

maintain Fe in the concentration of 10�9–10�4 M to achieve

optimal growth, however Fe acquisition is challenging due to

the low solubility of Fe in soil solution [1]. Although Fe is

the fourth most abundant element in the earth’s crust, it is

not readily available to plants. In well-aerated soils at physio-

logical pH, the concentrations of free Fe3+ and Fe2+ are less

than 10�15 M, a value far below that required for optimal

growth [2]. Thus, Fe-deficiency often limits plant growth caus-

ing agricultural problems. In fact, one third of the world’s cul-

tivated soils are calcareous and considered Fe deficient [3]. In

addition to the low solubility, the properties of Fe require

plant cells to place limitations on its accumulation. Superoxide

and hydrogen peroxide, that are produced in the cells during

the reduction of molecular oxygen, are catalyzed by Fe2+

and Fe3+ to form highly reactive hydroxyl radicals [4]. The hy-
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droxyl radical can damage most cellular components such as

DNA, proteins, lipids and sugars. Thus, Fe uptake in plants

is highly regulated to prevent excess accumulation.

Once Fe has entered the symplast, Fe is bound to various

chelators, facilitating it remaining in solution and preventing

it from participating in the generation of hydroxyl radicals.

Organic acids, such as citrate, are known to bind Fe3+; nico-

tianamine (NA) forms stable complexes with both Fe2+ and

Fe3+ [5]. Fe-chelator complexes also play roles in short- and/

or long-distance transport of Fe.

Over the last 10 years, many Fe uptake and transport related

components have been identified at the molecular level. In this

review, we will follow the pathway of Fe movement from the

soil to the seed and describe the suggested roles of identified

gene products in an effort to understand how plants acquire

Fe from the soil, how plants partition Fe among different tis-

sues and subcellular organelles, and how plants regulate their

Fe-deficiency responses (Fig. 1).
2. Fe uptake

Plants have evolved two strategies to take up Fe from the

soil. Non-grasses activate a reduction-based Strategy I when

starved for Fe whereas the grasses activate a chelation-based

strategy.
2.1. Reduction-based Strategy I

2.1.1. Proton release. Under Fe-deficiency, Strategy I

plants extrude protons into the rhizosphere, lowering the pH

of the soil solution and increasing the solubility of Fe3+. This

works because for every one unit drop in pH, Fe3+ becomes a

1000-fold more soluble [6]. The responsible proton-ATPases

are not yet identified at a molecular level, but several pro-

ton-ATPases of the AHA (Arabidopsis H+-ATPase) family

are suggested to be involved this process. For example,

AHA7 is up-regulated in response to Fe-deficiency and its

expression is dependent on FIT1 (Fe-deficiency induced

transcription factor 1), implicating AHA7 as part of the

Fe-deficiency response [7]. Cucumber also has at least one

Fe-regulated proton ATPase, CsHA1, whose expression is

induced in Fe-deficient roots [8].

2.1.2. Fe(III) chelate reduction. Fe becomes more avail-

able by reducing Fe3+ to the more soluble Fe2+. The reduction

step, prior to Fe2+ uptake, has been shown to be critical for Fe

uptake from Fe-deficient soil. The Arabidopsis mutant, ferric-

chelate reductase defective 1 (frd1), has no inducible root

Fe(III) chelate reductase activity and develops severe chlorosis
ation of European Biochemical Societies.



Fig. 1. Fe transport from the soil to the seed. Red arrows represent speculative flow of apoplastic Fe; blue arrows indicate Fe movement into
symplastic space. After initial diffusion from the soil (A), Fe is imported into epidermal or cortex cells (B). Once in the cytoplasm, Fe moves through
symplastic passages to the stele and then is exported into a xylem vessel (C). Apoplastic leakage is blocked by the Casparian strip (shown in brown
boxes). Fe precipitates in root apoplast is re-absorbed under Fe-deficiency (D). Fe is transported to the shoot through the transpiration stream (E)
and imported into the leaf cytoplasm (F). Fe precipitates in shoot apoplast are remobilized on demand of sink tissues (G). Fe moves through
symplastic passages from a source tissue to a sink tissue via phloem loading (H) and unloading (I).
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when Fe is limiting [9]. The corresponding Arabidopsis gene,

FRO2, was identified based on sequence similarity to a subunit

of the human respiratory burst oxidase, gp91phox, and the

yeast Fe(III) chelate reductase, Fre1 [10]. FRO2 mapped to

the same location as frd1, and is able to complement the frd1

phenotype. FRO2 is expressed in the epidermal cells of Fe-defi-

cient roots and is thought to be the main Fe(III) chelate reduc-

tase in roots. Plants overexpressing FRO2 are resistant to low

Fe growth conditions [11]. The FRO family of metal reduc-

tases contains seven additional members in Arabidopsis

[12,13]. The expression of FRO genes in various locations sug-

gests different sets of FRO proteins are participating in Fe

uptake in different plant tissues. For example, like FRO2,

FRO3 and FRO5 are expressed in roots. However FRO3 is

predominantly expressed in the vascular cylinder of roots, sug-

gesting a role in Fe re-absorption from the root apoplast

(Fig. 1D). The shoot-specific FRO genes are FRO6, FRO7,

and FRO8. The promoter of FRO6 contains multiple light-

responsive elements and a FRO6 promoter driven reporter

gene is activated upon exposure to light [14].

Fe(III) chelate reductases have also been identified in pea

and tomato. Like FRO2 in Arabidopsis, PsFRO1 mRNA

accumulates in Fe deficient roots; however, the mRNA is also

seen throughout the root, suggesting that PsFRO1 may also

play a role in Fe transport within the plant [15] (Fig. 1B

and D). LeFRO1 mRNA is detected both in roots and shoots,

indicating a role in Fe mobilization in the shoots (Fig. 1B and

G). LeFRO1 localizes to the plasma membrane in onion

epidermal cells and confers Fe(III) reductase activity when

expressed in yeast [16].

2.1.3. Fe2+ transport. Fe2+ is transported into the root by

IRT1, a member of the ZIP (ZRT, IRT-like proteins) metal
transporter family. The Arabidopsis IRT1 gene was identified

by functional complementation of an Fe uptake mutant of

yeast [17]. The Arabidopsis irt1 mutant exhibits chlorosis

and severely impaired growth [18–20]. Indeed, irt1 plants

die before setting seed unless supplied with high levels of sol-

uble Fe. IRT1 is expressed in the epidermal cells of Fe-defi-

cient roots and localizes to the plasma membrane. Taken

together, these data suggest that IRT1 is the major trans-

porter for Fe uptake from soil [18]. Although only Fe can res-

cue the survival of irt1, metal uptake and growth assays in

yeast showed that IRT1 can transport multiple divalent

metals (Fe, Zn, Mn and Cd), and in keeping with these

observations, irt1 plants have reduced levels of Fe, Mn, Zn

and Co.

There are 15 additional ZIP metal transporters in Arabidop-

sis: IRT2, IRT3, ZIP1 through ZIP12 [21] and the distantly

related IAR1 [22]. IRT2 is most similar in amino acid sequence

to IRT1 and is expressed in the external layers of Fe-deficient

roots [23]. However, irt2 plants show no symptoms of Fe-defi-

ciency and overexpression does not appear to substitute for the

loss of IRT1. Thus, although IRT2 complements the growth

defect of Fe uptake mutant yeast, it must be playing a different

role than IRT1. It will be of interest to examine the subcellular

localization of IRT2 in plants.

IRT1 orthologs have been found in other Strategy I plants

as well as in rice, which is a Strategy II plant. We will discuss

OsIRT1 and OsIRT2 in the following section. In tomato,

LeIRT1 and LeIRT2 are specifically expressed in roots. How-

ever, unlike Arabidopsis, LeIRT1 and LeIRT2 are expressed in

both Fe sufficient and Fe deficient roots, with LeIRT1 showing

induction under Fe-deficiency [24]. RIT1 (Root Iron Trans-

porter 1) from pea is expressed in Fe-deficient roots [25]. When



S.A. Kim, M.L. Guerinot / FEBS Letters 581 (2007) 2273–2280 2275
expressed in yeast, RIT1 showed high-affinity Fe transport and

low-affinity Zn and Cd transport.
2.2. Strategy II uptake

Grasses, such as corn, wheat and rice, use the chelation-

based Strategy II. In response to Fe-deficiency, grasses release

small molecular weight compounds known as the mugineic

acid (MA) family of phytosiderophores (PS). PS have high

affinity for Fe3+ and efficiently bind Fe3+ in the rhizosphere.

Fe3+–PS complexes are then transported into the plant roots

via a specific transport system. The chelation strategy is more

efficient than the reduction strategy and thus allows grasses to

survive under more drastic Fe-deficiency conditions [3].

2.2.1. Synthesis of phytosiderophores. The family of mugi-

neic acids includes MA, 2 0-deoxymugineic acid (DMA), 3-epi-

hydroxymugineic acid (epi-HMA), and 3-epihydroxy

2 0-deoxymugineic acid (epi-HDMA). Each grass produces its

own sets of MAs and increases the production and secretion

of MAs in response to Fe-deficiency. Thus, tolerance to Fe-

deficiency is correlated with the amounts and the types of PS

secreted [2]. For example, rice, wheat, and corn secret only

DMA in relatively low amounts and thus, are susceptible to

low Fe availability. In contrast, barley secretes large amounts

of many types of PS, including MA, HMA, and epi-HMA and

is therefore more tolerant of low Fe availability [26]. In the

generation of MA, nicotianamine (NA) is the key intermediate

that is produced from the condensation of three molecules of

S-adenosyl methionine by nicotianamine synthase (NAS).

NA is present not only in grasses but in non-grasses as well.

NA can bind various metals including Fe2+ and Fe3+, but is

not secreted, suggesting a role for NA in intra- and intercellu-

lar metal transport in both for Strategy I and Strategy II

plants. In Strategy II plants, grass-specific nicotianamine

aminotransferase (NAAT) converts NA to the intermediate

3 0-keto DMA [27]. Subsequent reduction of the 3 0-keto inter-

mediate produces DMA, the common precursor of all other

MAs [26]. DMA then undergoes hydroxylation and produces

other types of MAs. Two barley genes, Ids2 and Ids3, encode

dioxygenases and are thought to catalyze the formation of

epi-HMA and epi-HDMA in Fe-deficient roots [28].

In an attempt to enhance Fe nutrition, two barley genes,

NaatA and NaatB, encoding NAAT were introduced under

the control of their native promoters into rice [29]. These trans-

genic rice plants produced fourfold more grain than control

plants when they were grown in alkaline soils with limited

Fe availability. NAAT activity is therefore a limiting step in

the production of MAs in rice. However, despite the high levels

of NAAT activity, the increase in MAs released was not strik-

ing. One may expect that with more substrates provided to the

NAAT enzymes by co-expressing higher levels of NAS, a more

impressive change in the levels of MAs produced.

2.2.2. Uptake of Fe–PS complexes. Following Fe3+ chela-

tion by PS, a high-affinity uptake system specific for Fe–PS

complexes transports Fe–PS into the epidermal cells of Fe-defi-

cient roots. The yellow-stripe 1 (ys1) maize mutant showed a

defect in uptake of Fe–PS, resulted in Fe-deficiency, and plants

developed interveinal chlorosis (yellow-stripe) [30]. Ac trans-

poson tagging of the YS1 gene enabled its molecular cloning.

YS1 encodes an Fe–PS transporter, an integral membrane pro-

tein with 12 putative transmembrane domains that belongs to

the oligopeptide transporter (OPT) superfamily. YS1 can
restore the growth of an Fe uptake mutant of yeast when

supplied with Fe(III)–DMA, but not when supplied with

Fe(III)–citrate. Electrophysiological analysis in Xenopus

oocytes demonstrated that YS1 encodes a proton-coupled

transporter for phytosiderophores and NA metal chelates

[31]. YS1 mRNA accumulates in response to Fe-deficiency,

further suggesting that YS1 function in Fe uptake from the

soil. In addition, YS1 is also expressed in the shoots, suggest-

ing a role for YS1 in the intercellular transport of Fe in the

plant shoots. A recently characterized barley ortholog,

HvYS1, is only expressed in the roots and seems to be specific

for uptake of Fe(III)–PS [32].

2.2.3. Mix and match. Strategy II plants can also take up

Fe2+ like Strategy I plants. Rice, for example, in addition to

having the ability to transport Fe–PS complexes, is able to

transport Fe2+ via OsIRT1 [33]. Like IRT1 in Arabidopsis,

the OsIRT1 and the OsIRT2 genes are expressed predomi-

nantly in roots and are induced in response to Fe deficiency.

However no increases of FRO-like gene expression or Fe(III)

chelate reductase activity were detected in Fe-deficient rice

roots. It is plausible that rice can compensate for the lack of

effective Fe(III) chelate reductases because of its wetland cul-

ture. In paddy fields, the equilibrium of Fe3+/Fe2+ is shifted

in the direction of Fe2+ due to the deficiency of oxygen in

the soil. The adoption of a Fe2+ acquisition strategy can be

especially advantageous for rice, since rice plants are not very

efficient at Fe3+ uptake via Strategy II.
3. Long-distance Fe transport

Once Fe enters the root symplast, Fe is required to be bound

by chelating compounds. Fe–chelator complexes then move

through intercellular connections into the stele along the diffu-

sion gradient. The release of Fe into the xylem vessels requires

Fe efflux from the symplast into the apoplastic space (Fig. 1C).

The mechanism of Fe efflux is not yet clearly understood. In

mammals, a duodenal protein encoded by the IREG1 gene is

an Fe-regulated transporter involved in the basolateral Fe

efflux from epithelial cells into the circulation [34]. In Arabid-

opsis, there are three proteins predicted to be similar to

IREG1. AtIREG2 (also referred to as FPT2) is shown to local-

ize to the vacuolar membrane of root epidermal cells and is

involved in Fe-dependent nickel detoxification [35]. FPT1/

AtIREG1 is localized to the plasma membrane of stele cells,

suggesting a possible role in Fe release into the xylem vessels

(Guerinot, unpublished data).

It is generally agreed that Fe is present as Fe(III)–citrate

complexes in the xylem where the pH is around 5.5–6 [5]

(Fig. 1E). The Arabidopsis mutant, frd3 (man1), has provided

molecular evidence for the role of citrate in long-distance Fe

transport. frd3 has deregulated Strategy I responses, showing

constitutive expression regardless of the external Fe supply

[36]. As a result, the frd3 mutant accumulates more Fe in its

roots. Despite this, frd3 xylem exudate contains approximately

half as much Fe and significantly less citrate than the exudate

from wild-type plants. The FRD3 gene encodes a transmem-

brane protein belonging to the multidrug and toxin efflux

(MATE) family of small molecule transporters and is therefore

suggested to transport citrate. Two-electrode voltage clamp

analysis has revealed that FRD3 expression in Xenopus
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oocytes mediates currents when exposed to citrate, supporting

a role for FRD3 in citrate efflux [37]. Supplementation of

growth media with citrate rescues the chlorotic appearance

of frd3 plants. FRD3 is expressed in the root pericycle and vas-

cular cylinder, indicating a role for FRD3 in citrate efflux into

xylem vessels [38]. frd3 accumulates more Fe in the shoot

apoplast, despite reduced levels of Fe (regardless of the form

of the Fe-complexes) in the xylem sap. This raises an interest-

ing question on the role of bypasses in long-distance Fe trans-

port. It is expected that increases in both apoplastic movement

from root to shoot and the xylem-to-phloem Fe movement

through transfer cells might compensate for xylem-mediated

Fe transport.

The mechanism of Fe uptake from the xylem vessels into leaf

tissues (xylem unloading to symplast and re-absorption to

apoplast) is not clear (Fig. 1F). However, it is believed that

components of Strategy I uptake play a role when Fe moves

across the plasma membrane of the leaf cells. Several FRO

genes are expressed in shoots as described earlier in this review.

Several Arabidopsis ZIP genes are also expressed in shoots

(Guerinot, unpublished data). The IRT1 gene is expressed in

the basal part of flowers, suggesting its role in Fe uptake in

aerial tissues in addition to roots [18].

Fe must also be transported through the phloem, because

the transpiration flow in the xylem vessels is inefficient in devel-

oping organs such as the apex, seeds and root tips. Fe remobi-

lization from older leaves to younger leaves also takes place via

phloem transport. The pH in the phloem sap is >7, thus Fe

needs to be bound to chelators in order to remain soluble.

Studies with the castor bean Ricinus communis have identified

an 11 kDa Fe transport protein (ITP) as an Fe-chelator in the

phloem [39]. ITP specifically binds Fe3+ as shown by in vivo

labeling experiments. Thus, it is presumed that Fe is trans-

ported as a Fe(III)–ITP complex in the phloem. ITP belongs

to a large family of late embryogenesis proteins known as

dehydrins. There is a gene in Arabidopsis similar to the ITP

gene, so it would be interesting to see whether this mechanism

of phloem transport exists in other plants. In addition to ITP,

NA has been proposed to function in Fe transport in the

phloem, based on its ubiquitous presence in plant tissues and

its ability to form stable complexes with Fe2+ at neutral and

weakly alkaline pH [40]. The tomato mutant chln (chloronera)

demonstrates the role of NA in long-distance Fe transport.

chln was identified due to its interveinal leaf chlorosis, espe-

cially in young leaves. However, chln has increased Fe uptake

in roots independent of external Fe supply and accumulates

high concentrations of Fe in its shoots and roots. chln pheno-

types are rescued by grafting a chln shoot onto wild-type root-

stock, suggesting a mobile, normalizing compound. The

responsible compound was purified and identified as NA;

exogenous application of NA complements chln phenotypes.

The chln gene encodes NAS.

The presence of a small amount of Fe2+ in the phloem sap

has lead to the idea that NA can act as a shuttle by chelating

Fe2+ from Fe(III)-ITP during phloem loading and unloading.

This hypothesis requires the participation of an oxido-reduc-

tion system for Fe2+/Fe3+ conversion and specific Fe(II)–NA

transporters within the phloem. Yellow-stripe 1 like (YSL)

transporters, that share sequence similarity with maize YS1,

are likely involved in the transport of Fe(II)–NA complexes.

YS1 transports Fe(III)–PS and Fe(II)–NA complexes as men-

tioned earlier. Indeed, among 8YSL genes in Arabidopsis,
most of AtYSLs (AtYSL1 and AtYSL2, AtYSL4 through

AtYSL8) are able to complement the Fe uptake mutant of

yeast when Fe(II)–NA is exogenously supplied [41,42]. Rice

has 18 putative YSL genes in its genome. OsYSL2 is capable

of mediating the transport of Fe(II)–NA and Mn(II)–NA

but not of Fe(III)–DMA or Mn(II)–DMA when expressed in

Xenopus oocytes [43]. YSL3 from Thlaspi complemented the

Fe uptake mutant of yeast and mediated NA dependent Ni

or Fe uptake [44].

The YSL genes are expressed in various tissues, suggesting

roles in Fe uptake at diverse locations. AtYSL1 mRNA is ex-

pressed in the vasculature of roots and shoots; more specifi-

cally in the xylem parenchyma surrounding xylem tubes

[42,45]. AtYSL1 is also detected in young siliques and in the

chalazal zone of the embryo, indicating its role in Fe loading

of the seed. ysl1 seeds contain two- to fourfold less NA (and

less Fe) than wild-type seeds, while ysl1 shoots contain ele-

vated levels of NA. The germination of ysl1 seeds under Fe

deficient conditions is slower than that of wild-type seeds, a

defect that can be rescued by Fe supply. Interestingly, the lev-

els of AtYSL1 are increased in response to high Fe, reflecting

increased demand for Fe loading. AtYSL3 has a similar

expression pattern to AtYSL1 and is expressed in the vascula-

ture of shoots and reproductive organs. A more drastic pheno-

type is observed in ysl1ysl3 double mutants compared to ysl1.

ysl1ysl3 plants exhibit interveinal chlorosis in leaves and re-

duced fertility, presumably due to defective anther and embryo

development. These phenotypes are partially rescued by exog-

enous Fe supply. Interestingly, similar phenotypes were also

observed in previously reported NA-defective tobacco plants

[46]. When endogenous NA in tobacco plants was depleted

by expressing a barley NAAT, the transgenic plants displayed

interveinal chlorosis and defects in reproductive growth and

fertility. The AtYSL2 gene is expressed in differentiated roots

and in xylem-associated cells within the vasculature of ex-

panded leaves [47]. A more restricted localization in root endo-

dermis and pericycle cells has also been reported [41]. AtYSL2

localizes to the plasma membrane, more specifically the lateral

zone toward meta-xylem tubes, suggesting its role in the lateral

transport of metals in veins. However, the ysl2 mutant does

not show any obvious growth defect or altered metal accumu-

lation under various metal conditions.

The YSL genes in Strategy II plants also play a role in long-

distance Fe transport. The maize YS1 gene is expressed both in

roots and shoots [30]. Several rice YSL genes (OsYSL6,

OsYSL14, and OsYSL16) are expressed both in roots and

shoots; OsYSL2 and OsYSL13 are expressed preferentially in

shoots [43]. More specifically, OsYSL2 is expressed in the com-

panion cells of the phloem and the vascular bundles in flowers

and in developing seed. Together with the localization to the

plasma membrane, OsYSL2 is suggested to play a role in

Fe(II)–NA transport in phloem and rice grains.
4. Intracellular Fe transport

Mutants with constitutively active Fe-deficiency responses in

their roots can be divided into two groups by their leaf pheno-

type: one group, including chln and frd3, shows interveinal

chlorosis (Fe deficiency), despite Fe overaccumulation and

the other group, such as the brz and dgl mutants of pea, dis-
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play necrotic or degenerative leaves (Fe toxicity) due to Fe

overaccumulation [48,49]. This illustrates that Fe homeostasis

at a cellular level is highly regulated and plants can develop

either Fe-deficiency or Fe toxicity in normal soils depending

on where they lose control. Our knowledge is limited concern-

ing how plants regulate cellular Fe homeostasis and intracellu-

lar Fe transport, but several observations have suggested that

vacuoles play a role in accumulating excess Fe and releasing Fe

into the cytosol when external Fe supply is sub-optimal. Upon

Fe overload, the concentrations of NA are increased and the

bulk of NA is found in the vacuoles of tomato and pea, while

NA is detected in the cytosol under normal or Fe-deficient con-

ditions [50]. The brz and dgl mutants also showed high levels of

NA in their vacuoles, similar to what is seen in Fe overloaded

plants [50]. It is not yet known whether Fe translocates into the

vacuole as Fe–NA complexes or whether specific transporters

for NA are present and the Fe–NA complexes then form in the

vacuole. In the NA-free chln mutant, insoluble Fe(III)-phos-

phate precipitates are detected in the vacuoles of leaf cells, sug-

gesting NA is required to maintain vacuolar Fe in a soluble

form [51]. It is tempting to speculate that some members of

YSL gene family might localize to the vacuolar membrane

and be involved in re-translocation of Fe–NA into the cytosol.

The Arabidospis VIT1 (Vacuolar Iron Transporter 1) was

recently identified as an Fe2+ transporter that functions in vac-

uolar Fe storage [52]. VIT1 is 62% similar to its yeast ortholog

CCC1p, a transporter that can mediate Fe and Mn efflux into

vacuoles [53]. Yeast overexpressing CCC1 accumulate more Fe

in their vacuoles, and conversely, deletion mutants accumulate

less Fe and are sensitive to elevated levels of Fe. VIT1 comple-

ments the sensitivity of ccc1 yeast mutants to Fe toxicity. VIT1

localizes to the vacuolar membrane, and it is expressed in the

vasculature with increased expression seen during embryo

and seed development. When visualized by synchrotron X-

ray fluorescence microtomography, Fe localizes to the provas-

cular strands of wild-type seeds. In vit1, this Fe distribution is

completely abolished, suggesting VIT1-mediated vacuolar Fe

transport plays an important role in Fe localization in seeds.

Furthermore, vit1 plants grow poorly in Fe-limiting soils,

emphasizing the critical role of vacuolar Fe storage for the

growth of germinating seedlings.

Members of the Nramp (natural resistance associated

macrophage proteins) gene family mediate the uptake of a vari-

ety of divalent cations. In Arabidopsis, AtNramp1, AtNramp3

and AtNramp4 can complement the Fe uptake mutant of yeast,

revealing that these proteins can mediate Fe transport [54,55].

Nramp1 is expressed preferentially in roots and is induced by

Fe-deficiency, implicating it in Fe uptake from the soil. How-

ever, overexpression of Nramp1 leads to resistance to toxic lev-

els of Fe, suggesting that Nramp1 may be targeted to an

intracellular membrane and may play a role in Fe remobiliza-

tion into the cytosol upon Fe-deficiency [56]. Indeed, its toma-

to orthologs, LeNramp1 and LeNramp3, are localized to

membranes of intracellular vesicles and vacuoles in yeast in

addition to the plasma membrane [57]. Both Nramp3 and

Nramp4 are localized to the vacuolar membrane in Arabidop-

sis [55,58]. The mRNAs of Nramp3 and Nramp4 are up-regu-

lated in response to Fe-deficiency. In Nramp3 overexpressing

plants, the mRNAs of IRT1 and FRO2 are down-regulated,

further indicating that Nramp3 remobilizes vacuolar Fe into

cytosol, thereby down-regulating Fe uptake genes. Studies of

atnramp3 atnramp4, the double knockout Arabidopsis mutant,
demonstrate that Fe mobilization mediated by Nramp3 and

Nramp4 is crucial during early seedling development [58].

Mutant seeds contain wild-type levels of Fe; however, the

mutant displays retarded root growth and cotyledon greening

during seed germination under low Fe. Electron microscopy

showed the disappearance of Fe-associated globoids in wild-

type vacuoles during germination while globoids of the mutant

remained unaltered, suggesting mutant seeds fail to retrieve Fe

from vacuolar globoids. Interestingly, like the VIT1 gene, both

Nramp3 and Nramp4 are expressed in the vasculature. The

seedling growth of atnramp3 atnramp4 and vit1 mutants are

arrested on Fe-limiting soil. Taken together, these data suggest

that vacuoles in the vascular cells are an important site of Fe

storage and Fe remobilization during germination is crucial

for the seedling development when the Fe supply is low.

More than 90% of the Fe in leaf cells is located in the chlo-

roplasts [59]. Chloroplasts have a high Fe requirement in order

to maintain the structural and functional integrity of the thy-

lakoid membranes, and thus the chloroplast is highly sensitive

to Fe-deficiency [2]. Fe can be stored in plant cells in the stro-

ma of plastids as ferritin. Ferritin is a Fe storage protein with

the ability to store up to 4500 atoms of Fe. Arabidopsis con-

tains four genes that encode ferritin (AtFer1–4). All four pro-

teins are predicted to contain transit peptides for delivery to

the plastid. mRNA of AtFer1, AtFer3 and AtFer4 were

increased upon excess Fe treatment in both roots and leaves

[60]. Despite its abundance, the mechanism of Fe uptake into

the chloroplasts is not well understood. Fe uptake studies with

isolated barley chloroplasts indicated that this process is light-

dependent, and requires Fe(III) chelate reductase activity [61].

In Arabidopsis, FRO6 shows light-dependent gene expression

and localization in green tissues, fulfilling the prerequisite

characteristics for chloroplast Fe uptake [14]. Most recently,

a presumptive Fe transporter, PIC1 (permease in chloroplasts),

has been identified that localizes to the chloroplast [62].

Although the function of PIC1 orthologs were annotated as

unknown, the cyanobacterial orthologs belonged to COGs

(clusters of orthologous groups) that are generally involved

in ion or solute transport. PIC1, a homolog of cyanobacterial

sll1656, complemented a yeast mutant defective in Fe uptake

and pic1 mutants showed severe chlorosis and only grew

heterotrophically.
5. Regulation of Fe-deficiency responses

The tomato fer (T3238fer) mutant and the cloning of the

corresponding gene, FER, have offered the first clues as to

how plants regulate their Fe-deficiency responses [63]. The

fer mutant is unable to induce the Strategy I mechanism in

response to Fe-deficiency, leading to chlorosis and lethality

under low Fe conditions. The FER gene encodes a basic helix-

loop-helix (bHLH) transcription factor, suggesting that it

may be involved in directly regulating gene expression of Stra-

tegy I components. The FER mRNA is expressed in the root

epidermis, the outer cortical layer of root tips and in the vas-

cular cylinder of the mature root-hair zone. This suggests that

FER plays a role in regulating Fe uptake genes from the soil

and genes related to Fe redistribution as well. In the fer mu-

tant, the induction of LeIRT1 mRNA in response to Fe-defi-

ciency is abolished and LeNramp1 expression in the vascular

parenchyma in the root hair zone is abolished [16,57,63]. The
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expression of FER gene itself is rather constitutive regardless

of Fe supply (0.1 and 10 lM Fe), or slightly down-regulated

in response to supra-optimal Fe (100 lM Fe). However,

FER protein levels are controlled by Fe availability. In trans-

genic tomato expressing FER under the control of the consti-

tutive CaMV 35S promoter, FER mRNA can be detected

from the plants grown at 10 lM and 100 lM Fe. FER protein,

however, is not detected from the plants grown at 100 lM Fe,

suggesting FER is down-regulated post-transcriptionally at

elevated Fe levels.

FIT1 (also known as bHLH29/FRU) is the Arabidopsis

ortholog of FER [64,65]. Expression of FIT1 in the fer mutant

allows the mutant tomato to induce the Fe-deficiency

responses and survive under Fe-limiting conditions [65]. fit1

mutants, like fer mutants, are chlorotic and die at the seedling

stage unless supplied with Fe. FIT1 is expressed in the root

epidermal cells and is induced under Fe-deficient conditions,

suggesting that FIT1 regulates Fe uptake genes in response

to Fe-deficiency. In fit1 mutants, the induction of FRO2

mRNA is not observed in response to Fe-deficiency. In con-

trast, up-regulation of IRT1 mRNA is still observed. In plants

expressing FIT1 driven by the 35S promoter, mRNA expres-

sion of FRO2 is not altered compared to wild-type [7]. Thus

it will be interesting to investigate whether FIT1 protein is

regulated post-transcriptionally, like FER, and is present only

under Fe deficiency.

The overexpression of IRT1 and FRO2 in plants has re-

vealed post-transcriptional regulation. IRT1 mRNA is de-

tected in the roots and shoots of 35S-IRT1 plants regardless

of Fe status, however, IRT1 protein can only be detected in

Fe-deficient roots [66]. Likewise, 35S-FRO2 plants show

increased FRO2 mRNA levels but Fe(III) chelate reductase

activity is elevated only when plants are Fe-deficient [11].

The mechanism of this regulation is currently not known,

but an FIT1-dependent factor is suggested to control IRT1

protein levels by post-transcriptional regulation. In fit1 mu-

tants, the IRT1 protein is not detected although IRT1 mRNA

is induced upon Fe deficiency [7].
6. Final remarks

A wealth of information has been obtained in recent years

on Fe uptake components in plants. Of particular importance

has been the cloning of FRO2, IRT1, and YS1 genes, enabling

Fe uptake from the soil to be described at the molecular level.

Characterization of additional members from these gene fam-

ilies also has enriched our knowledge of Fe transport and dis-

tribution within the plant. The future challenge will be to

elucidate the specific contribution of each family member by

addressing their subcellular localization, tissue specificity,

and gene regulation in response to Fe status.

We still know relatively little about how the Fe-deficiency re-

sponses are regulated. The cloning of FIT1 and FER, encoding

the essential transcription factors of Arabidopsis and tomato,

helped us to understand the FIT1-dependent regulation of

Strategy I components; FIT1 is necessary for the induction

of FRO2 mRNA and the maintenance of increased levels of

IRT1 protein in response to Fe-deficiency. FIT1 regulates sub-

sets (71 out of the 179) of Fe-deficiency inducible genes, indi-

cating that FIT1-independent regulatory mechanisms also
operate in Fe-deficiency responses [7]. FIT1 mRNA itself is

up-regulated by Fe-deficiency, thus upstream regulatory com-

ponents also remain to be discovered. Ethylene is suggested to

participate in the regulation of FIT1 and FER expression;

treatment of plants with an ethylene inhibitor decreases the

levels of FIT1 and FER mRNA induction in response to Fe-

deficiency [67].

Among the least understood mechanisms is how plants sense

Fe status and formulate the Fe-deficiency signal. It is a well-

established idea that long-range signals are involved in the reg-

ulation of nutrient uptake genes in roots [68,69]. The growing

shoot communicates its requirement to the root and the uptake

in the root matches the demand for nutrients. Reciprocal graft-

ing between the pea mutants, brz and dgl, and their parental

genotypes reveals that the Fe(III) chelate reductase activity in

roots is determined by the shoot genotype, indicating a

shoot-derived signal regulates the root response [49]. In split

root experiments, the Fe(III) chelate reductase activity was in-

creased in half of the root supplied with Fe, suggesting a long-

distance signaling from Fe-deprived half to the other half [69].

Interestingly, Fe(III) chelate reductase activity was decreased in

the Fe-deprived portion of the root, implying the local presence

of Fe is also involved in the induction of the Fe uptake activity.

Recently, the expression of IRT1 and FRO2 was tested using

split roots. When plants were grown under Fe-deficiency and

transferred into a split root system, IRT1 and FRO2 mRNAs

were shown to be more abundant in the roots supplied with

Fe, further supporting the inductive effect of local Fe [70]. Iden-

tifying the components for the local- and long-range signaling

and deciphering how these signaling events are integrated with

the Fe deficiency responses will enable us to fully understand

the molecular basis of Fe uptake and transport in plants.
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